A computationally efficient structure key for large proteins

Introduction - composite structure keys

Protein structures are conveniently described by their plain amino acid sequences. However, the plain sequence cannot capture sidechain and terminal modifications and it is therefore ill suite
unique protein identifier. A further complication is crosslinks.

The crosslinked peptide above shows that lactam cyclization between Gln and Asp yields the same chemical structure as a lactam cyclization between Glu and Asn.

Simple chains - no crosslinks

Below is an example peptide expressed in PLN ${ }^{2}$, where we have a erminally-modified residue and another residue with a sidechain modification.

 \qquad

Crosslinked residues
A real-life example of crosslinked residues is the 34 -residue polycyclic peptide Nisin with five thioether crosslinks.

The example peptide below is similar to the C-terminal end of Nisin, showing two Threonine-Cysteine thioether crosslinks, one going in

We could attempt to represent each crosslink by reverse-engineering its original residue structures and describe them as linked by a
reaction, e.g. "Thr->Cys (thio)". This is difficult since multiple starting residues may potentially produce the same crosslink structure, depending on the reaction that produces the crosslink. As in the lactam example above.

Instead, we have chosen to represent each crosslink fragment by its structure key. The structure key will be normalized so it is direction
invariant - which is important when canonicalizing cyclic peptides and additional data describes the direction of the crosslink, ensuring that the structure is described correctly by the final composite key.

One solution is to use the InChI key for the entire chemical structure as an identifier. ${ }^{1}$ However, this is not feasible (nor efficient) for structures having more than
protein with ~ 130 residues.

The approach pursued here is to use the protein plain sequence to the maximum extent possible, but rep of the protein by the InChI key of those chemical fragments. This resulting composite key is very efficient when the majority of the protein structure can be described by its plain sequence.

The first InChI key [JeG...] in the composite key is the InChi key of the "[biotin]-Ala" fragment and the second key [KLX...] is for the

The InChI keys calculated for the fragments contain information about the fragment attachment points although InChI does not
support attachment points. This attachment point information is crucial in order to unambigously capture where the backbone is located and how its peptide bonds are oriented
We have found that labelling each attachment point by fixed isotope complexes works reliably. The probability that these isotope
complexes occur by accident in reality can be kept to practic when the isotope complexes are selected carefully.

Crosslink, residue $3 \rightarrow 6$, InChI key LXURMCIIVOJVNI-CDFSFGNOSA-N.

Crosslink, residue $5 \rightarrow 8$, InChI key HUFQJNDMEWMFMQ-CDFSFGNOSA-N.
The InChI key chosen as the direction-invariant key is the one wit the lowest lexical sort order, here the HUF... key. The composite structure key for the example peptide is then

The link from residue 3 to 6 is the reverse of the direction-invariant crosslink and therefore residue 3 is designated as the "b" endpoint, and residue 6 the "a" endpoint.

If the crosslink fragment were fully symmetric both residues would If the crosslink fragment were
be marked as an "a" endpoint.

Scaling to antibody-size
demonstrate keys for large protein structures we used the following example from literature

We emulate a version of the drug described above by attaching the MCCa heavy chain of trastuzumab.

Detail of antibody chemical structure - modified lysine residue.

Performance and scalability

he performance of the composite key checksum generation was tested for 4 -chain proteins of varying chain lengths.

Discussion

The composite structure key is a very efficient way of describing welldefined proteins where you know the sequence and have a fair knowledge of its secondary structure and modifications. The key and a modest amount of known modifications.

We have not described how tertiary or even more complex crosslinks are handled. The principles still apply although the performance of each crosslink structure key calculation scales badly as the ordinality of the crosslink increases: Tertiary crosslinks require $3 * 2 * 1$ key
calculations to normalize, quarternary crosslinks $4 * 3 * 2 * 1$ key

We do not show the complete composite key of the antibody-drug conjugate since it is very long; the antibody sequence is more than 1300 residues.

Very long keys are problematic to index efficiently and therefore we represent the key by a hash value. We have chosen to use the MD5 composite structure key for the antibody-drug conjugate is

This checksum is well-suited for indexing in a standard databas system to support very fast duplicate checks.
[1] InChI - The IUPAC International Chemical Identifier
http://www.iupac.org/home/publications/e-resources/inchi.ht
$[2]$ Biochemfusion PLN (Protein Line Notation),
http://Www.biochemfusion.com/doc/\#\#Specificitions
calculations, and so on. Time
ordinalities occur in practice. composite structure key will describe the structure less rewn, the rastuzumab." DM1 molecules are conjugated to the Fc region of key should be able to handle statistically distributed components. This is an area for further investigation.

When introducing modified residues, like the DM1-modified lysine residue above, the processing time increases since an InChI key has

In the case of trastuzumab, the processing time goes from 0.33 m (plain sequence antibody) to 2.16 ms (antibody with one modified DM1-lysine residue). However, the processing time stays const

